Future Operation Scenarios

RHIC performance overview

Luminosity and polarization evolution (towards "enhanced luminosity")

EBIS

Injector performance – bright bunches for collider

Inten	Efficiency[%]	
Tandem	5.4×10^9	
Booster Inj.	2.9×10^{9}	54
Booster Extr.	2.4×10^9	83
AGS Inj.	1.2×10^{9}	50
AGS Extr.	1.1×10^{9}	<u>92</u>
Total		$\overline{20}$

Emittances: $10 \pi \mu m$, 0.3-0.4 eVs/nLimit: Beam induced gas desorption at Booster injection.

Au³²⁺: 1.4 part. μA, 530 μs (40 Booster turns)

Proton polarization at the AGS

- Full spin flip at all imperfection and strong intrinsic resonances using partial Siberian snake and rf dipole
- Ramp measurement with new AGS pC CNI polarimeter:

- Remaining polarization loss from coupling and weak intrinsic resonances
- New helical partial snake (RIKEN funded) eliminated coupling resonances
- Strong super-conducting helical partial snake will eliminate all depolarization.

RHIC Au-Au performance – 2 x design luminosity

RHIC – a Uniquely Flexible High Luminosity Collider

RHIC design and achieved parameters

Mode	No of bunches	Ions/bunch [10 ⁹]	β* [m]	Beam pol.	L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{store ave} [cm ⁻² s ⁻¹]	A ₁ A ₂ L _{peak} [cm ⁻² s ⁻¹]
			Desig	gn values (19	199)		
Au – Au	56	1.0	2		2×10^{26}	8×10 ³⁰	31×10^{30}
p – p	56	100	2		4×10^{30}	4×10^{30}	5×10 ³⁰
		A	Achieved	l values (up t	to 2005)		
Au – Au	45	1.1	1		4×10 ²⁶	16×10^{30}	58×10 ³⁰
d – Au	55	120/0.7	2		3×10^{28}	6×10^{28}	24×10^{30}
Cu – Cu	36	4.5	1		80×10^{26}	32×10^{30}	79×10^{30}
$\mathbf{p} \uparrow - \mathbf{p} \uparrow$	84	80	1	50%	8×10 ³⁰	8×10 ³⁰	11×10^{30}
p – p	56	170	1		10×10^{30}	10×10^{30}	15×10^{30}

Other high luminosity hadron colliders:

$$\mathsf{L} = \frac{3f_{rev}\gamma}{2} \frac{N_B N^2}{\varepsilon \beta^*}$$

Tevatron (2 TeV) LHC (14 TeV) achieved 128×10³⁰

 $\begin{array}{c} \text{goal} \\ 200 \times 10^{30} \\ 10000 \times 10^{30} \end{array}$

scaled to 200 GeV 20×10^{30} 140×10^{30}

RHIC availability and time in store

- Excellent availability despite very complex operation modes.
- Machine set-up time reduced to just 3 weeks.

Future plans for RHIC

Machine goals for next few years with upgrades in progress:

- Enhanced RHIC luminosity (112 bunches, β * = 1m):
- Au Au: $8 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1} (100 \text{ GeV/nucleon})$

 $2 \times achieved$

- For protons also 2×10^{11} protons/bunch (no IBS):
- $p \uparrow p \uparrow$: 60 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (100 GeV) 150 × 10³⁰ cm⁻² s⁻¹; 70 % polarization (250 GeV) 6 × achieved !! (luminosity averaged over store delivered to 2 IRs)
- EBIS (low maintenance linac-based pre-injector; all species incl. U and pol. He3; avoid Tandem investment; ~ 3 year pay-back period)
- RHIC luminosity upgrade (e-cooling, ~10 × more luminosity, R&D in progress)
- eRHIC (high luminosity $(1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})$ eA and pol. ep collider)

"5-year" projections

Au-Au projections: Cu-Cu scaled to Au-Au: Excellent agreement

pp projections:

3 instead of 2 exp. \rightarrow half lumi.

Beam-beam limit/IR: 0.0035

Expect: 0.007

Electron Beam Ion Source (EBIS)

- New high brightness, high charge-state pulsed ion source, ideal as source for RHIC
- Produces beams of ALL ion species including noble gas ions, uranium (RHIC) and polarized He³ (eRHIC)
- Achieved 1.7×10^9 Au³³⁺ in 20 µs pulse with 8 A electron beam (60% neutralization)
- CD0 received, CD1 review in July 2005, construction schedule: FY2006 09

EBIS layout

Summary

Since 2000 RHIC has collided, for the first time,

- Heavy ions
- Light on heavy ions
- Polarized protons (50% beam polarization)

Heavy ion luminosity increased by factor 100

For next 4 years planned:

- Factor 2 increase in heavy ion luminosity
- Factor 6 increase in proton luminosity with 70 % polarization

